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Abstract

The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their
special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic
Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic
Programs more practical for solving trajectory optimization problems. The ultimate goal is to bring trajectory

optimization solution speeds into the realm of real-time control.

The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs
encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL
factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting
recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases
the efficiency of all of the typical LP solution operations over that of a dense malrix LP code. At the same time
numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go
by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of
the LP rank-1 updating procedure, although it may result in more changes of the active set than if pseudo constraints
were relaxed in a non-stagewise fashion. The usual stability of "closed-loop" Linear/Quadratic optimally-controlled
systems, if it carries over to strictly linear cost functions, implies that the savings due to reduced factor ulxlate effort
may outweigh the cost of an increased number of updates.

An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example
demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of

the proposed pseudo constraint relaxation scheme.

Introduction

The objective of the present work is to develop and test a special-purpose algorithm for the solution of
Dynamic Linear Programs (DLP). The general form of a DLP is as follows:

T

]find: x = Xl ... x_ (la)

to minimize: J = co ct ... c (lb)

!1A12 0 x I b I =

subject to: . - < 0 (lc)

ANN

where the xi vectors constitute the decision vector time history, the ci vectors are linear cost coefficients, and the Ati

and Aa÷l matrix blocks and the bi vectors define the linear problem constraints. The bracketed equality and inequality
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signs in eq. lc indicate that both forms of constraints may be present; some rows may be equalities while others are
inequalities. The problem in eq. la-lc is also known as a staircase LP.

A reason for interest in this problem from an aerospace controls point of view comes from its relationship to
the following multi-stage trajectory optimization problem:

T T T T T T]find: x = Uo xl ux x2 ... uN-i xN (2a)

to minimize:

subject to:

N-I

J = _ L(Xk,Uk,k) + _(XN) (21))

k=0

xogiven (2c)

Xk+I= f(Xk,Uk,k) fork = 0 ...N-I (2d)

a(Xk,Uk,k) { ; }0 fork=0_. N-I (2e)

a(xN,N){ _ }0 (20

where the ui and xi+l vectors constitute the control and state vector time histories, the L0 and qb0 functions define the

nonlinear stagewise and terminal costs, eq. 2c defines the initial conditions, eq. 2d is the discrete-time dynamics
difference equation, and constraints such as 2e and 2f may be present to restrict the states, or the control inputs, or
both.

The current paper is part of a research program that seeks a fast and reliable way to solve the problem in eq. 2a-
2f. The ultimate goal is to do real-time aerospace guidance by repeatedly solving this problem. The program is
taking a two-pronged approach, algorithm improvement and parallelization of computations. This paper relates to the
first prong, algorithm improvement. Fletcher's L x penalty function, trust region adaptation of the method of

successive quadratic programs (SQP) [1] is one algorithm for solving such a nonlinear program (NP). This algorithm
has fast local convergence properties, it ensures global convergence (to a local minimum), and it is good at handling
inequality constraints. The application of this algorithm to the nonlinear trajectory optimization problem results in
Quadratic Programming (QP) sub-problems with a special structure, the dynamic programming structure. Efficient
solution of the NP requires efficient solution of the dynamic QP (DQP). Special-purpose algorithms for efficient
solution of a DLP can be similar to special-purpose algorithms for efficient solution of a DQP. Thus, the present
paper, in concentrating on DLP, constitutes a sort of warm-up exercise for later development of a DQP algorithm.

In addition to providing a warm-up, the present work provides a point of comparison with other research efforts
in the field. Little or no work has been done on special-purpose DQP algorithms [2,3], but much attention and effort
has been devoted to special-purpose DLP algorithms (e.g., Refs. 4-7). Fourer provides a useful overview of different
avenues of approach that have been tried [7]. He groups algorithms for problem la-lc into three categories: Compact
Basis, Nested Decomposition, and Transformation. All get the correct answer, but none have proved particularly
successful in that none consistently out-perform the general sparse simplex method with regard to computation time.

The present algorithm is in the compact basis category; it works with a staircase factorization of the active
constraints. The factorization used, a staircase QL factorization, is consistent with the plan for subsequent upgrading
to handle the quadratic cost case. It has numerical stability, and there is no trade-off between numerical stability and
factor compactness; general sparse matrix LP codes must deal with such trade-offs. The focus of the entire project is
on aerospace guidance problems, hence the submatrices of the problem, the Aii and Aii+lblocks, are relatively dense.

Therefore, there is hope that the current algorithm will out-perform general sparse matrix LP algorithms on these
problems (e.g., algorithms such as MINOS [8]).

The body of this paper concentrates on explanation of the algorithm, with an example and conclusions at the
end. Before describing the algorithm, problem la-lc is related to a general LP on the one hand and to a control-type
LP on the other hand. The algorithm description begins with a review of the application of the Lt penalty function

method to a general LP. The staircase QL factorization then gets presented along with methods for multiplier
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solution, decision vector solution, and rank-1 update. The algorithm explanation concludes with the presentation of a
specialized order for problem solution that could further reduce the computational burden. The example at the end of
the paper demonstrates the algorithm's applicability to aerospace trajectory optimization and examines whether the
special solution ordering yields increased computational efficiency.

Equivalent Problem Forms

The problem in eq. la-lc is a special case of the following general LP form:

find: ,t

to minimize: J = c T x

{:}subject to: A _ - b < 0

where x is defined in eq. la and A, b, and ¢ are defined as:

Oa)

(3b)

(3@

[A.0]r!ol[cl]All Al2 t cl

A= . b= , c= (4)
".

0 ANN LbNJ

Form 3a-3c is fullygeneral. It is the LP form used in developing general active constraint algorithms [I].

A more specialized DLP problem statement clarifies the relationship of these problems to controls:

find: ui for k = 0 ... N-1 and xk for k = 1 ... N
N-1

2 r" "lrxq •to minimize: l = { Cx k Cult } + Cx N x N
t.u_

(5a)

(5b)

subject to: x 0 given

Xk+ I=F kxlt+G ku k+hlt

{:}Axk xk + Auk Ult - bxult < 0

Ax 0

fork= 0 ... N-1

fork =0 ... N-1

(5c)

(_

(._)

(50

where there is a direct correspondence between eq. 2a-Zf and eq. 5a-5f, all functions having only linear and constant
terms in the latter problem. The following definitions put problem 5a-5f in the format of problem la-lc:

ra _ Ibxu01 rAxaX0=U 0, A00=tAu|, bo andco=

LGltJ -L-hoJ-[Vo Jx°' %

[ Axk Aukl [b::lt] FCxltl._-Ix'l,"b'--'"Oc'°Ic.i
LU,d Fk GltJ L kj

0

XN = xN, ANN = AxN, bN = bxN, and cN-- CxN

Thus, the problem in eq. la-lc is related to controls.

(6a)

for k = 1 ... N-1 (6b)

for k = 0 ... N-1 (6c)

(61)
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Algorithm

The L1 ExactPenaltyFunctionand an ActiveSetLP Methodt

The L 1 exact penalty function method enforces equality and inequality constraints as in 3c by adding a penalty

cost to the problem cost that is a weighted L1 norm of the constraint violations. The penalty function reformulation

of problem 3a-3c becomes

f_ x (Ta)

to minimize: J ----CT X + _/max{ IIAe x - bellt + II[Aia x - bi.]+lll } (To)

where IXm,xis a large positive constant, where constraints [A,b] in eq. 3c have been split into the equality constraints,

[A,,bd, and the inequality constraints, [Ai_,bi_], and where [a] + = max(a,0). This technique is actually very similar to

the adjoining of constraints in Lagrange and Kuhn-Tucker formulations. The only difference is that the constraint

multipliers are effectively limited in magnitude by Bm,x. If la_ is greater than the magnitude of the largest multiplier

in the solution of problem 3a-3c, then problem 7a-7b has the same solution. The advantage of this technique is that it
solves the problem in a single phase, optimizing while achieving feasibility. It is a variant of the LP technique
known as the big M method. The primary reason for using it in the current paper is to make the algorithm

compatible with the proposed method for eventually solving the NP in eq. 2a-2f.

Active constraints refer to those constraints that are satisfied as strict equalities. The active set method for

solving problem 7a,7b consists of the following steps.

1. Guess solution, _t, and split [A,b]into active and inactive rows:

[ A.ct,b.*t I = P [A,b] (8)
LAinm,bintct-_

where P is a permutation matrix, and where the active constraints at the guessed solution must

yield an Am that is square and nonsingular.

2. Compute A.d t

3. Compute ti._t = - (A_) T (c + Ari,_M_ where the elements of lk_,,t are either -!_,,, 0, or +ttm.x

depending on whether the corresponding inactive constraint is an equality or an inequality and

depending on whether it is positive or negative at the guessed solution, x.

4. Find the element, i, of _ that is furthest out of the allowable range for the penalty function,

(ti_i ¢ [-_. +tram] for equality constraints, (l&ct)i _ [0, +I_x] for inequality constraints. Stop

if no elements are out of range; the current x is optimum.

-1
5. Compute the search direction, _. = A.,tei, where ei is the unit vector with all zeros except for a 1

in row i.

6. Compute the new guessed solution, x = x + ct _,, where ct has the same sign as (_tet)i and where

its magnitude is chosen to be the smallest value that makes one of the inactive constraints active,

min kxl such that [Atom(x+ ct _yJt) - bi_oa]j = 0, for some row j.

+ The discussion of this section deals with the problem form in eq. 3a-3c. The discussion is based

on algorithms presented in Ref. 1.
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A.ct, and go to step 3.7. Interchange rows i and j between [Am,b m] and [Ai_._t,bima], update -I

The equation in step 3 results from differentiation with respect to x of the augmented cost in eq. 7b. Despite the

nondifferentiability of eq. 7b for some values of _t, differentiation can be done if the active constraints are treated as

adjoined equality conslraints with unknown multipliers i_t rather than as L1 penalty terms. Steps 4 and 5 determine a

descent direction. The step length is determined in step 6. The step length rule ensures that the entire step is in a

descent direction of the piecewise-linear augmented cost. Because of the step length rule, the new active set changes
by only one row. Step 7 takes advantage of this fact in the recomputation of A,_t's inverse.

The algorithm used in this paper starts out by assuming that a set of pseudo constraints are active. This yields
the identity matrix for the initial A.ct, and step 2 is trivial. The allowable range for the pseudo constraint multipliers

is different than for the actual problem conslraints, la_ o • [0,0]. They get dropped from the active set in the course

of the algorithm unless the problem solution is not unique.

For each constraint addition/deletion the algorithm cycles through steps 3-7. Most of the computational load

per cycle is caused by manipulations with the inverse of the A,ct matrix, multiplication by it in steps 3 and 5 and

rank- 1 updating of it in step 7. The main idea of this paper -- indeed the main idea of all compact basis schemes -- is
to compactly represent factors of Aae t that are suitable for carrying out multiplications by Aact's inverse and that are

easy to update when A_ct undergoes a rank-1 row change.

Staircase QL Factorization for Staircase LP

A,¢t inherits a staircase structure from A as in eq. 4. The compact QL factorization used here performs a stage-

wise backwards sweep to factor the nonzero blocks of A,ct. The following recursion yields matrices that constitute a

staircase QL factorization of A,_t:

D_q = ANNe t

1 0]Q 0 D_ = L. D_.I Lta

QooDoo = Loo

fork= N ..... 1

(ga)

(9b)

(9c)

where the Ak.lk.laet and Ak.lkae t matrices are the nonzero blocks of the staircase A,_t matrix, and where the Qkk are

orthonormal and the Lkk are lower triangular. The QL factorization is stored in the matrices Q_k, L_, and D_ for k =

N ..... 0 and the matrices Dkk-1 for k = N ..... 1. The Dii matrices have no special properties. Equations 9b and 9c are

only implicit relations for these factors, but the factors can be explicitly evaluated via Householder transformations.
At stage k, the factorization begins with the data Ak.lk.lact, Ak.lkact, and Dkk, and it computes Q_, Lk_, Dk-lk-1, and

Dkk-_. The result Dk.lk. 1 then completes the necessary data for stage k-1.

Numerical stability of the factorization is ensured by the use of orthogonal transformations only. The
computational complexity of the factorization algorithm is linear in the number of stages and cubic in the
dimension(s) of the blocks, which is as efficient as can be expected if the blocks are dense. The factor storage is linear
in the number of stages and quadratic in the dimension(s) of the blocks, which again is the best that can be achieved
with dense blocks.

Equations 9a-9b are a DLP equivalent to the matrix Riccati equation of time-varying, multi-stage Linear
Quadratic Regulator theory. The lower blocks of the right hand side of eq. 9b act as a closed-loop dynamic difference
equation as will be shown in the next section. The upper block on the right hand side, [Dk-tk-l, 0], propagates active

constraint effects backwards in time; it summarizes the constraints that x_.x must satisfy in order to make possible the

satisfaction of all constraints from stage k-1 onwards. Note that the number of rows in [Dk.lk-X, 0] does not

necessarily equal the number of rows in [Ak-wloct, Ak-tk_].
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StaircaseQL Solution for the Multiplier and DecisionVectorTime Histories

Thebasic operations involved to do steps 3 and 5 of the LP algorithm presented above involve solution of a
linear system by orthogonal transformation and forward or backward substitution. This is similar to the forward and
backward substitutions of the simplex method and its variants. The transformations and substitutions are done in
stage-wise recursions using the stagewise factors. Performing the following backward recursion then forward recursion
yields the active constraint multipliers.

Backward re_ursion for intermediate multipliers hN through _0:
T T

LT _,N = " CN" ANNin_,_Nin.a "AN-INi_-I_ (10a)

T T T
LT _t =" Vk+IkJ_t+l - Ck " Akltin_Wltinlct- Ak'Ikinactl_-limct fork = N-I .....I (10b)

Lroo_,o = " r TV lo hi - Co- A0%,K,{_,_ (10C)

Forward recursion for intermediate multipliers _to through _ and for active constraint multipliers tto,et through I,{,N,_t:

_=QT_ (lla)

[']_-°T...,E:l fo,,_-o...,, .,,
_k+l 1

= (IIc)

Step 5 of the LP algorithm is accomplished by solving the system of equations Alffyx, = e i. To illustrate how

the staircase QL factorization does this, the following equations present its use in solving the alternate system A,ctx

= b,_t. Again, a backward recursion followed by a forward recursion yields the solution.

Backward recursion for intermediate nonhomogeneous constraint terms d N through d o and gN through go:

d N = bN. a (12a)

dk-I ] F bk'laetg, --Q"L ]
go = Q0o do

Forward recursion for the decision vectors x o through me.N:

Lo )to = go

Lkk _'k = " Dkk-I_.k.! + gk

fork= N ..... 1

fork= 1 ... N

(12b)

(12c)

(13a)

(13b)

As stated earlier, eq. 13b is like the closed-loop dynamic difference equation of multi-stage LQR theory. The matrix

Lkk is lower triangular and allows for easy solution for x k in terms Of Xka and gk"

Rank-I Update of Staircase QL Factorization

This section explains how to efficiently update the staircase QL factorization after a single constraint
addition/deletion. This procedure must be carried out every time step 7 of the main algorithm is encountered. One
could recompute the entire factorization, but the practicality of all LP codes hinges on their ability to update the
factors for much less work than would be required to rea_ompute them from scratch.
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Thegeneraladd/dropupdatingschemeforthestaircaseQLfactorizationmustupdatetheresultsof eq.9a-9b
whenanarbitraryrowj atstagekaddgetsaddedtotheactiveconstraintsetand another arbitrary row i at stage kdrop
gets deleted from the active constraint set. Thus, [A_,ct, A_+l,ct]lk=k,dd gets a new row and [A_,ct, Akk+l,ct]_=kdrop

lOseS a row. The stages kadd and kdrop can have any relationship to each other, and the update algorithm must be able
to handle all possible cases. Three different cases can occur, kadd > kdrop, kadd = kdrop, and kadd < kdrop.

Efficient rank-1 update can be accomplished by a series of stage-wise rank-1 updates linked together in an
appropriate manner. Three different stagewise rank-1 updating algorithms are needed to do this. The first algorithm
updates the factors computed in eq. 9b when a new row has been added to the bracketed expression on the left-hand side
of that equation. The second algorithm updates these same factors in the case of a row deletion from the bracketed
expression on the left-hand side. This second algorithm also modifies Qk-_k-_ by a single Householder transformation.

The third stagewise algorithm updates these same factors when D_ has undergone an arbitrary rank-1 change. Recall

that the bracketed matrix on the left-hand side of eq. 9b represents the input data for a given stage and the Q_ man'ix

together with the bracketed expression on the right-hand side represents the result of the stagewise factorization. The
following discussion explains each of these three algorithms and the way in which they work together to accomplish
the multi-stage rank- 1 update.

First, consider what happens to the stage k factorization when a new row gets added to either [A_.lk._,_t, Ak.lkact]

or D_. The algorithm begins by adding a row and a column to Q_ with all 0s except for a 1 at the intersection of the

new row and the new column. Thus, Q_ remains orthonormal. Suppose the new constraint row is [P_I, pXk2], then

the new row and column of Q_ are added so that eq. 9b temporarily becomes:

I° 11°° 121EAklkl'ctAklk'ct]oE°kkl°l0 T 1 0 T p'rkl pTk2 = pT 1 pTk2

Qldc21 0 Qkk22 Dkk Dkt-I L_

(14)

where the Qkkij matrix blocks are just the blocks of the original Q_ matrix. Suppose nk is the dimension of the Xk

decision vector. Then it is also the dimension of the square lower-triangular matrix L_. A series of nk Givens

rotations can be performed to zero out pTk2 while preserving the lower-triangular structure of Lie. The first Givens

rotation uses the last row of L_ as the pivot row and zeros out the last element of pr_ 2, and successive rotations use

successively higher rows of Lkk as the pivot and zero out successive elements of pTk2 going from right to left.

Suppose these rotations are G_ to G,k. Then the new stage k factorization becomes:

Q_,_. = G_ "''''GI'

Qldtll 0 Qkkl2

0T 1 0 T

Q_k2t 0 Q_22

(15a)

IOkkl0] .rOkkl01dTkl 0 T = Gnk....°Gl,_ PTkt pTk 2

Dk_-tncw Lk_w [. Dkk-I Lkk

(151))

Dk'lk'lnew = I Dk'lk'ldTklI (15c)

where the last equation has been included to emphasize the fact that the new Dk.lk. 1 differs from the old Dk.lk-i by only

a single new row. This fact sets the stage for the use of this same algorithm at stage k-1. The new Qkt is

orthonormal because the augmented matrix is orthonormal and because all Givens rotations are orthonormal. Thus,

the new factors have all of the required properties for use in the LP algorithm described above.
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Next,considerwhathappenstothestagek factorizationwhena row gets deleted from either [Ak.lk_laet, Ak.lkae t]

or Dkk. The following development is based on ideas for QP from Ref. 9. Write Qkk in the form

Qkk _-

Qkk11 q_12 Qkk13"

qrkk21 thZ2 qTkk23

Qkk31 qkk32 Qkk33

(16)

where the middle column conforms in matrix multiplication with the constraint row that is getting deleted -- rows of

Dkk can be referred to as constraints; they are propagated active constraints. The bottom blocks, [Qkk31,qkk32,Qkk33],

have nk rows, the same as in the bottom blocks on the right hand side of eq. 9b, [Dkkq,Lkk].

The stagewise deletion algorithm starts with a Householder transformation in which the qkk22 row in the above

representation is used as the pivot row to zero out qkklZ in the first rows. Next, a series of nk Givens rotations is used

to zero out successive elements of qkk32 starting with the topmost element and working downwards. Again, the Oakz2

row in the above representation is used as the pivot. If the Householder lransformation is H and the Givens rotations

are G1 to G, k, then the following changes to the stage k factorization result:

" Qkkllncw 0 Qkk12t_w q r Q.kkll qkk12 Qkkl3

0T 1 0T J = Gnk.....G1-H _ qTkk21 qkk= qTkk23/

. Qkk21new 0 Qkk22new [-Qkk31 qkk32 Qkk33

(17a)

- Qkkllncw Qkkl2new 1 07b)

I Dk-lk-lncw

pT I

Dkk-lr_ w

o] E lpTk2 = Gnk'""Gl "H" Vk.lk. 1 0
Dkk.l Lkk

Lkkncw

(17c)

where [prkl,pTk2] corresponds to the constraint that is getting dropped. Orthonormality of the original Qkk matrix

ensures the form of the result on the left-hand side of eq. 17a. Note that the matrix Dk-lkq,_w is a function only of

Dk._k. 1 and H; the Givens rotations do not affect it. Therefore, another Householder transformation, H", can be

constructed based on the same Householder vector. It yields:

I D k'Ik'Inew I = H"dTk.ldmp Dk'lk'l

(18)

where dk.ldrop is not necessarily equal to Pkl" This sets the stage for propagation of the constraint deletion process

backwards to stage k-1. If Qkqkq gets transformed according to

EI° ]Qk-lk-linmdm = Qk-lk-I 0 H"
(19)

then Qk-lk-liaumm is still orthonormal because H" is orthonormal, and because H" is equal to its transpose, constraint

[0T,dTk.ldn_ j is the constraint that must get dropped at stage k-1. The foregoing algorithm can accomplish the deletion

at this next preceding stage.
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Thealgorithmthatperformsthemulti-stage rank-1 update of the staircase QL factorization starts with the
highest stage at which either a constraint addition or deletion occurs. It uses whichever of the two foregoing stagewise
updating algorithms is appropriate to propagate the addition or deletion backwards. It continues until it reaches a stage
at which both an addition and a deletion must take place. One, but not both, of the changes at this stage may be the
result of a backwards propagation. At this stage of the concurrent add/drop, the multi-stage algorithm first does a
single-stage constraint addition followed by a single-stage constraint deletion with no change of stage in between.

If the index of this stage is k, then Dk.lk. _ will differ from its pre-update value by a rank-1 change at most.

This can be shown by recognizing that the result on the left-hand side of eq. 15c becomes the input data on the right-
hand side ofeq. 18 when an add followed by a drop both occur at the same stage:

[ ]" [O,lk]
dTk.l drop dTkl

(20)

H" is a Householder transformation; it differs from the identity matrix by a rank-1 matrix, hence the conclusion about
the change in Dk-_k-1. Define this rank-1 change in terms of the vectors rkq and Sk-t:

Dk.lk.lnew = Dk.lk. 1 + rk.lSTk_l (21)

If either rk-1 or Sk-1 is the 0 vector, then the multi-stage rank-1 update is complete. If not, then another stagewise
updating algorithm is needed.

The final stagewise updating algorithm must update the stagewise factors for an arbitrary rank-1 change in the
data Dkk- It is allowed to produce at most a rank-1 change in Dkqkq. This restriction on its effect on Dk.lk__ makes it

self recursive for all subsequent stagewise factorizations in the backwards chain. It can be used for updating the
factorizations of all stages that precede the concurrent constraint addition/deletion stage. It can be used recursively
until no more updating is needed.

One might suppose that the necessary algorithm has already been developed in a work such as Ref. 10. That
paper is a good reference for rank-1 modifications, and it defines the general methodology used in the algorithm below,
but the relevant algorithm from [10] would result in a rank-2 change to Dk-_kq- This would destroy the stagewise

recursive applicability of the algorithm, hence the modified algorithm presented below.

Suppose there has been a rank-1 modification to Dkk as in eq. 21 (except at stage k instead of stage k-l). Then,
eq. 9b gets modified:

k_Ak'Ik'lactQ o

where

Ak" Ikact Jq [ Dk'Ik'l[Dkk+rkSTk] = Dkk-I
o] ['"']toT+ STk ]

Lit Wk
(22)

I Vkl I = Qkk_ 0Wk rk] (23)

and where vk-t and Dk_ik_ 1 have the same number of rows, n_k._. The algorithm starts by reducing the v-w vector to a

vector with zeros in all of its entries except the last two. This is done by first applying a Householder transformation,

HI, to the first ndk_l+l rows to zero out the first ndkq rows. Then a series of Givens rotations, G1 to Gnkq, is applied

to successive pairs of rows of the resulting vector to zero out successive elements until only the last two elements are
left nonzero. These same transformations are applied to all terms on both sides of eq. 22, and the two terms on the
right hand side of the equation are added together with the following (partial) result:
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aVk-l**0,, O, ... O01

:, ....j
G_kI"""GI"HI Lkk Wk .....

- : - ..

, * * * *

, * * * *

(24)

where ¢x is a scalar and where asterisks (*) indicate nonzero scalar elements of the matrix. The top row of vector

entries in the right hand matrix corresponds to the upper fight-hand 0 block in the bracketed expression on the fight
side of eq. 9b. The bottom rows constitute a matrix with nonzero elements on the first diagonal above the main, on
the main diagonal, and below the main diagonal. All elements on diagonals that are 2 or more above the main

diagonal are zero. The nonzero entry in the first column of the top block, CtVk.l,results from application of the 1-11
Householder transformation to matrix [0T,LTkk]T.

The remaining transformations are applied in order to restore lower triangularity to the matrix on the fight hand
side of eq. 24. First, a series of nk-1 Givens rotations, Gnk to G2,k-2, is applied to successive pairs of rows of the

matrix starting from the last two rows and working up to the fast two rows in the lower block. Each rotation zeros
out one of the above-diagonal elements. At the end of this operation the matrix has the form

I C_Vk.10 0 ... 0--* * 0

: ". ". "..

* * * * *-

(25)

so that the lower block is lower triangular. The final part of the algorithm is to apply a last Householder
transformation, H2, to zero out the first column of the top block. These operations result in the following factor

updates:

Qkknew= H2"G2nk-2"""Gl"Hl'Qkk (26a)

-V,.,,..,,.0] .. ,-,>,..,,_,0]rv,..,.-i,_o.,.I}= H2"G2nk2".. Gl HI<I + sTk
Dkk.ln_wLkknew - " [L Dkk-I Lkk L Wk_1"-

(26b)

In both of the Householder transformations, the first ndka elements of the transformation vector are parallel to Vk._,and

none of the Givens rotations affect the first n_,__rows of the bracketed expression on the right of eq. 26b. Therefore,

Dk-lk-l_w differs from Dk-lk-1only by a rank-1 matrix:

Dk.lk.lnew = Dk.lk.1 + Vk_lyTk.1 (27)

where the vector Yk-Ican be determined from the algorithm presented above. Thus, the algorithm updates stage k

according to the rank-1 change in the stage's input data, and it produces a similar rank-1 change in the input data for
stage k-1. The multi-stage rank-1 updating algorithm propagates these rank-1 changes backwards until at some stage
one or both of the vectors in the rank-1 change are zero. This occurs at least by the time stage k = 0 is reached

because D.1.1 has zero dimension.
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Numerical stability of the factorization update is ensured by the use of orthogonal transformations only. The
computational complexity of the multi-stage update algorithm is linear in the number of stages affected and quadratic
in the dimension(s) of the blocks, which is as efficient as can be expected if the blocks are dense. If the number of
stages affected by a particular row interchange of active and inactive constraints can kept small, then the cost of the
update will be small. This fact provides the motivation for the solution scheme presented in a later section.

Possible Improvements to Banded Staircase QL Factorization

Several issues come to mind in considering the forgoing use of a QL factorization for an LP basis factorization.

They all revolve around a single question: is the entire factorization needed to implement the LP algorithm? For
instance, a general LP method has been developed that uses LQ factorization but does not store Q [11]. Not storing
the Q factors would yield a great savings in memory and computation time if it carded over to the present multi-stage
algorithm. This presents no difficulty to the procedures for solving for the multiplier and decision vectors, steps 3 and
5 of the main LP algorithm. The problem with not storing Q occurs in the factor update, step 7. There is no
apparent way to do the single-stage constraint deletion or the single-stage rank-1 modification without storing at least
some of the Qkk matrix. Reference 9 has some ideas in its section on quadratic programming that could be used to

eliminate storage of the lower part of Qkk. Alternatively, storage of Dla and Du. t could be eliminated. Savings in

computation time and memory would be about the same for either scheme, about 30% savings. These issues may be
explored in a later work.

Backwards-Sweeping Pseudo Constraint Relaxation and an Alternate Method of Selecting the
Active Constraint to Drop

In theory, all dynamic programming problems can be solved by first computing the cost-to-go at each stage,
then solving a single stage optimization at each stage. Part of the cost for each of these single stage problems is the
cost-to-go that results from the stage's decisions. For DLPs and for their associated LI penalty function problems, the

cost-to-go at a given stage is a piecewise-linear convex function of the decisions at that stage. This convexity
property gives rise to a hope that DLPs may have a property like the stability property of their quadratic-cost
counterparts, multi-stage LQR problems. In the DLP context, this property might mean that a small change in the
decisions at a given stage would give rise to even smaller changes in the state at subsequent stages. This might
translate into a grouping of constraint additions and deletions at stages nearly following the stage at which the decision
variations are taking place.

If this property exists, it can be exploited without the necessity of computing the entire cost-to-go function. If
all of the active constraint multipliers for constraints following a given stage are within their allowable range, then the
guessed solution is an optimal trajectory for all stages following that stage. Also, the local linear piece of the cost-to-
go function is known. Suppose the given stage can be optimized without causing any of the multipliers at subsequent
stages to exceed their L1 penalty function bounds. Suppose also that all of the original pseudo constraints are active

for the preceding stages. Then, the rank-1 updates that would have to be done during the optimization of that stage
might involve changes to very few stages. The assumption about the the pseudo constraints ensures that the updates
will not affect any of the stages preceding stage k-1 if stage k is being optimized. The possibility of stability implies
that max(kadd,kdrop) might, in most cases, not be much larger than k.

A change is needed to the main LP procedure presented above. It allows the multipliers at stages subsequent to
the stage being optimized to vary outside of their LI penalty function bounds. The modification needs to be in the

selection of the active constraint that gets dropped on each cycle. In the main algorithm, the dropped constraint is the
same as the non-optimal constraint that gets relaxed in steps 4-6. This could cause an active constraint multiplier that
was within its bounds to go out of its bounds. If the multiplier corresponded to a constraint at a subsequent stage,
then the optimality of the subsequent stages would break down.

This situation can be avoided by performing a search in the active constraint multiplier space for the active
constraint to be dropped. This search is the dual of that carried out in steps 5 and 6 of the main algorithm, and the
search direction is defined by relaxing the Lt penalty function constraint on the multiplier associated with inactive

constraint j, the inactive constraint that is becoming active. The size of the step in multiplier space is chosen to be
the smallest that brings one of the active constraint multipliers to a bound which the multiplier would violate if the
step size were larger; the new active constraint must be included in this test. The active constraint whose multiplier
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boundlimits this step size is the active constraint that gets dropped. It is not necessarily the constraint whose
relaxation was dictated in step 3 of the main algorithm.

With this scheme in place, only pseudo constraints will have multipliers that are out of bounds in the step 3
optimality test. The number of non-optimal active constraints will never increase. In turn, each pseudo constraint
will eventually be the constraint that gets chosen for dropping, though this may happen while another pseudo
constraint is being relaxed.

A special order has been chosen for relaxing pseudo constraints to take advantage of the possibility of savings
from "stability". The modified main algorithm starts by testing and relaxing only stage-N pseudo constraints in steps
3-6. This continues until all of the stage-N pseudo constraints have dropped from the active list or have zero

multipliers. Then the algorithm switches to exclusive consideration of the stage-(N-l) pseudo constraints in steps 3-6.
It performs add/drop cycles until all of these pseudo conswaints get dropped or have zero multipliers. It continues this
stagewise pseudo constraint relaxation scheme in a backwards sweep all the way to stage 0. The guessed solution is
optimal after the last stage-0 pseudo constraint has been dropped or has had its multiplier go to zero. The trajectory
from stage k to stage N is an optimal trajectory once all of the stage-k pseudo constraints have been dropped or have
had their multipliers go to zero (although it probably will not be the final optimal trajectory associated with the

solution to the overall problem).

Comparison of Algorithm Complexity with Matrix Riccati Equation

Table 1 compares the present algorithm's computational complexity with that of related algorithms for a typical
aerospace controls problem. The time-varying multi-stage Matrix Riccati equation actually does not compute an Aact

because it solves a different optimization problem. It has been included because control engineers are more familiar
with it. The three QL factorization entries assume that the factors are built up from initial pseudo constraints via 900
rank-1 updates. In the last two entries, assumptions are made about the average number of stages affected per rank-1
update. The table clearly indicates that the staircase QL factorization makes a tremendous improvement in comparison
to the dense factorization; the improvement will not be nearly so great in comparison to a general sparse matrix code.

Also, large improvements are expected from the special ordering of the pseudo constraint relaxation. Note that all of
the algorithms are far more costly than the implementation of a time-varying LQR solution. Inequality constraints are
difficult to handle.

Table 1.

A Comparison of Effort for Factorization of A.c t for a Typical Aerospace Control Example

(100 stages, 6 state vector elements, 3 control vector elements)

Effort
(No. of Mult., Div., & Sqrt.)

Matrix Riceati Equation
Dense Matrix QL, Not storing Q

Staircase QL, Arbitrary order of pseudo constraint relaxation
Staircase QL, Special order of pseudo constraint relaxation

112,000
2,920,000,000

90,700,000
4,400,000

Aerospace Example

A simple aerospace control problem has been solved with the algorithm in order to demonstrate the usefulness
of this class of algorithms on aerospace problems and in order to study the algorithm's behavior. The problem is one
of fixed-time maximization of the distance travelled by a thrust- and impulse-limited ground-to-ground rocket. The

continuous-time problem is:

find: u(t) for 0 -_. t -< te = 12 sec (28a)

to minimize: J = - [ 1 0 0 0 ]x(tf) (2813)

subject to: x(0) = 0 (28c)
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0 32.2 -32.2

llu(x)ll2dx < 10 g-sec

(28e)

(28O

- [0010]x(t) _< 0 ft. (28h)

which is a point-mass model of motion in the vertical plane. The acceleration (thrust) limit is 5 gs and the impulse
limit is 10 g-sec. The first two state vector elements are horizontal position and velocity; the last two elements are
vertical position and velocity. Only thrust and a uniform gravity field act on the rocket. The f'ust control vector

element is horizontal acceleration; the second element is vertical acceleration. Constraint 28h keeps the rocket above
the ground.

In order solve this problem with this paper's algorithm, the control time history has been approximated by a
24-stage zero-order hold. Additionally, the norms in constraints 28e and 28f have been approximated by functions
with octagonally-shaped contours. The 2-norm's contours are spherical; so, this approximation introduces some
modelling error. Fixing the end time seems unnatural, but it is necessary in order to be able to model the problem as
an LP. An NP model is needed to handle the free-end-time case.

The LP code solved this problem in 55 min. on an IBM PC-AT with an 80287 coprocessor. It started from a
first guess that violated inequality constraint 28h at every stage and that foolishly tried to maintain a constant thrust
for the entire trajectory. Figures 1-3 compare the multi-stage LP solution with the exact continuous-time solution.

In Fig. 1, the LP solution does better than the exact solution because of mis-modeling; it takes advantage of some
extra thrust available at some points of the octagon norm. The thrust magnitude and angle time histories, Fig. 2 & 3,
are both close to the exact solution, and the discrepancies are due to the same modeling error.

Figure 4 gives a 2-dimensional histogram of the constraint addition/deletion frequency. The left-hand horizontal

axis indicates the stage at which the pseudo constraints are being relaxed in the special backwards-chaining process.
The right-hand horizontal axis indicates the stage at which constraint additions and deletions are occurring during that
relaxation process. The vertical axis gives the frequency of additions/deletions at the given right-hand-axis stage during
pseudo-constraint relaxation at the given left-hand-axis stage. The extreme left-hand side of the figure shows no

constraint addition or deletions -- none can occur at any stage before stage k- 1 when the pseudo constraints at stage k
are the ones being relaxed. The peaks on and near the center diagonal of the graph lend support to the conjecture that
most of the constraint additions/deletions will happen at stages near the pseudo-constraint-relaxation stage. Note,
however, that a moderate amount of constraint addition/deletion activity occurred near the terminal stage throughout
the optimization. Nevertheless, the average factor update was relatively cheap. Altogether, about 800 rank-1 updates
occur during the optimization. The total number of decision vectors in the time history is 312 -- 9 extra states are
needed to model the impulse constraint in eq. 28f.

Conclusions

An algorithm has been presented for solving Dynamic Linear Programs. It takes advantage of the staircase

structure of the active constraint matrix by factorizing it into staircase QL factors. These are derived in a stagewise
fashion and play a role similar to that played by the time-varying matrix Riccati equation in multi-stage LQR theory.
All of the usual linear programming functions have been implemented with the staircase QL factorization: decision

vector solution, multiplier solution, and rank-1 updating. Each function has a computational complexity of O(n2N) or
less, where n is a block dimension and N is the number of stages. This is the best that can be expected for dense
blocks. Numerical stability is assured via the exclusive use of QL factors and is independent of pivoting strategies.

The algorithm is a modified active set implementation of the big M method with pseudo-constraint

initialization. The modification restricts the set of non-optimal constraints that can be relaxed at one time to a single
stage. This restriction gets iterated through all the stages in a backwards chain. Also, the modification chooses the
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constraintthatgets dropped in a way that assures optimality of the final portion of the solution time history. The

modified strategy's goal is to reduce the average complexity of the rank-1 updates.

A 24-stage example problem has been solved. The algorithm solves the 312-dimensional problem in about 800
add/drop cycles, requiring 55 min. on an IBM PC-AT. The average update complexity is significantly reduced by the

modified active set strategy.
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